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Abstract 

In this paper, the self-propelled motion of Leidenfrost droplets on ratchet surfaces is numerically 

investigated with a thermal multiphase lattice Boltzmann model with liquid-vapor phase change. The 

capability of the model for simulating evaporation is validated via the D2 law. Using the model, we first 

study the performances of Leidenfrost droplets on horizontal ratchet surfaces. It is numerically shown 

that the motion of self-propelled Leidenfrost droplets on ratchet surfaces is owing to the asymmetry of 

the ratchets and the vapor flows beneath the droplets. It is found that the Leidenfrost droplets move in 

the direction toward the slowly inclined side from the ratchet peaks, which agrees with the direction of 

droplet motion in experiments [Linke et al., Phys. Rev. Lett., 2006, 96, 154502]. Moreover, the 

influences of the ratchet aspect ratio are investigated. For the considered ratchet surfaces, a critical 

value of the ratchet aspect ratio is approximately found, which corresponds to the maximum droplet 

moving velocity. Furthermore, the processes that the Leidenfrost droplets climb uphill on inclined 

ratchet surfaces are also studied. Numerical results show that the maximum inclination angle at which a 

Leidenfrost droplet can still climb uphill successfully is affected by the initial radius of the droplet. 

 

*Corresponding author: qkang@lanl.gov 



2 
 

1. Introduction 

When a liquid droplet is deposited on a solid surface whose temperature is far above the boiling 

point of the liquid (e.g., the room temperature for liquid nitrogen), the droplet will be levitated above 

the hot surface through the action of a vapor layer below its bottom surface [1, 2]. The vapor layer 

prevents the droplet from contacting the hot surface, which considerably reduces the heat transfer and 

therefore retards the evaporation of the droplet [3, 4]. This phenomenon, known as the “Leidenfrost 

phenomenon” [5, 6], has attracted significant attention due to the fact that the Leidenfrost state is a 

perfect superhydrophobic state [3] and can provide an almost frictionless motion [1].  

The liquid droplets at the Leidenfrost state are usually called Leidenfrost droplets. The 

characteristic of the vapor layer beneath a Leidenfrost droplet has been studied by Biance et al. [7]. In 

addition, they have deduced the scaling laws for Leidenfrost droplets. In 2006, Linke et al. [8] found 

that the Leidenfrost droplets perform self-propelled motion when they are placed on hot surfaces with 

asymmetric textures. They showed that [8] a solid surface covered with asymmetric ratchets and heated 

over the Leidenfrost temperature (the minimum temperature for stable film boiling) is able to propel an 

evaporating droplet in a preferential direction. This discovery has been recognized as a key modern 

breakthrough in controlling Leidenfrost droplets [1, 2]. It is believed that the feature of self-propelled 

Leidenfrost droplets can be utilized to create devices in which self-propulsion is obtained [1]. 

Following the work of Linke et al., many experimental studies have been conducted in recent 

years about the Leidenfrost phenomena. In 2011, Ok et al. [9] studied Leidenfrost droplets on micro- 

and submicron-ratchet surfaces and showed that a hydrophobic coating on ratchet surfaces can increase 

the velocity of a Leidenfrost droplet and decrease the threshold temperature of the droplet motion. 

Lagubeau et al. [10] found that the Leidenfrost solids (such as dry ice) also self-propel on hot ratchets 

in the same direction as liquids. Nevertheless, they proposed that the Leidenfrost droplets are driven by 
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an inertial propelling force. Such an issue was later clarified by Dupeux et al. [11] and Baier et al. [12]. 

They demonstrated that the viscous vapor flow is the main propulsion mechanism for Leidenfrost 

droplets, which is usually called the “viscous mechanism” in comparison with the inertial mechanism 

proposed in Ref. [10]. Furthermore, Marin et al. [13, 14] have studied Leidenfrost droplets on 

micro-ratchets with different droplet initial sizes, ratchet geometries and temperatures. They found that 

the viscous mechanism fits reasonably well with the experiments performed on micro-ratchets, for both 

large droplets and capillary droplets.  

Cousins et al. [2] have reported a circular ratchet trap (a surface with concentric circular ridges, 

each asymmetric in cross-section) for Leidenfrost droplets and Feng et al. [15] reported a ratchet 

composite thin film for low-temperature self-propelled Leidenfrost droplets. In addition, Dupeux et al. 

[16] have studied the effects of crenelated surfaces on sliding Leidenfrost droplets and Würger [17] has 

investigated the thermal creep in the motion of self-propelled Leidenfrost droplets/solids. However, 

Würger claimed that the thermal creep flow could be the origin of the propulsion mechanism. Later, 

Hardt et al. [18] examined the nature of thermally driven flows and quantified their contribution to the 

propulsion, showing that thermally driven flows make an insignificant contribution to the thrust of 

Leidenfrost objects. Moreover, Grounds et al. [19] have experimentally studied the processes that 

Leidenfrost droplets climb uphill on tilted ratchet surfaces with different sub-structures. Recently, 

Dupeux et al. [20] reported that the water droplets can be propelled far below the usual Leidenfrost 

temperature when using textured superhydrophobic ratchets, which extends the parameter range where 

self-propulsion can be obtained. Using a low pressure environment, Celestini et al. [21] found that the 

Leidenfrost droplets of water can be generated at room temperature. In addition, Celestini and 

Kirstetter [22] have investigated the influence of an electric field on Leidenfrost droplets and Maquet et 

al. [23] have studied the organization of microbeads in Leidenfrost droplets. Most recently, Wells et al. 



4 
 

[24] designed a Leidenfrost-based engine, which converts temperature difference into mechanical work 

through the Leidenfrost effect on turbine-like surfaces. It has been widely found that the Leidenfrost 

objects (droplets and solids) on ratchet surfaces move toward the slowly inclined side from the ratchet 

peaks. Nevertheless, anomalous cases have also been observed by Ok [25] and Hashmi et al. [26] on 

ratchet surfaces with metal oxide and chemically-contaminated ratchet surfaces, respectively.  

With the rapid development of computational science and computer hardware, numerical 

simulation gradually plays an important role in scientific research. In many research fields, numerical 

simulation has become an alternative to experiments or serves as an important supplement to 

experimental studies. About the viscous vapor flow between a Leidenfrost droplet and a ratchet surface, 

some theoretical explanations/assumptions have been made in the literature [8, 11-13]. However, to 

date, there is still no direct information about the vapor flow below a self-propelled Leidenfrost droplet. 

Definitely, the detailed flow field provided by numerical simulations would be very useful for revealing 

or demonstrating the fundamental features of self-propelled Leidenfrost droplets.  

To the best of our knowledge, there have been very few numerical studies that are related to 

self-propelled Leidenfrost droplets, which may be attributed to the challenge of modeling interfacial 

dynamics on rough surfaces with phase-change heat transfer. The existing numerical studies of 

Leidenfrost droplets were mostly focused on the shape of Leidenfrost droplets on a flat surface [27-29] 

and the impact of droplets on flat hot surfaces in the Leidenfrost regime [30, 31], e.g., Xu and Qian [28] 

and Bouwhuis et al. [29] have recently conducted numerical simulations of Leidenfrost droplets on a 

flat surface. For a Leidenfrost droplet on a flat horizontal surface, the expanding vapor will flow 

outward equally in all directions, which will not lead to self-propelled motion in a preferred direction. 

It is also noticed that Cousins et al. [2] have simulated airflow over a ratchet, but without considering 

the thermal processes involved in evaporation and levitation.  
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The purpose of the present work is to investigate the self-propelled Leidenfrost droplets from the 

numerical point of view. Specifically, the lattice Boltzmann method [32-37], which can be viewed as a 

discrete solver for the Boltzmann equation in the kinetic theory, is employed to simulate the dynamics 

of Leidenfrost droplets on ratchet surfaces. This method has been applied in a variety of fields with 

great success [38] and has been recently utilized to simulate liquid-vapor phase change, such as boiling 

heat transfer [39, 40] and droplet evaporation [41]. The pseudopotential multiphase lattice Boltzmann 

model is adopted [36, 37], which is very popular in the lattice Boltzmann community because of its 

distinct advantage. In this model, the phase separation between different phases can emerge 

automatically as a result of particle interactions [42, 43], without the need to use any technique to track 

or caputure the liquid-vapor interface. The rest of the present paper is organized as follows. The 

adopted multiphase lattice Boltzmann model is introduced in Section 2. The numerical simulations of 

self-propelled Leidenfrost droplets and the discussion are presented in Section 3. A brief summary is 

finally given in Section 4. 

2. Model description 

In the past two decades, the lattice Boltzmann method has been developed into an efficient 

mesoscopic numerical method for simulating fluid flows and heat transfer [33-35]. Unlike traditional 

numerical methods that simulate fluid flows by directly solving the Navier-Stokes equations, the lattice 

Boltzmann method is based on the mesoscopic kinetic equation. It simulates fluid flows by solving the 

discrete Boltzmann equation with certain collision operators, such as the Bhatnagar-Gross-Krook 

collision operator [44] and the Multiple-Relaxation-Time (MRT) collision operator [45, 46], and then 

accumulating the density distribution function to obtain the macroscopic averaged properties [33]. 

Using the Chapman-Enskog analysis, it can be found that the macroscopic Navier-Stokes equations can 

be recovered from the lattice Boltzmann equation [33]. 
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Generally, the lattice Boltzmann equation, which governs the evolution of the density distribution 

function, can be written as follows: 

        , , , ,t t tf t f t t F t           x e x x x ,  (1) 

where f  is the density distribution function, x  is the spatial position, e  is the discrete velocity 

along the  th lattice direction, t  is the time step,   is the collision term, and F
  is the forcing 

term. The MRT collision operator is adopted, which can be written as    1 eqf f  

      

[45, 46], where M  is an orthogonal transformation matrix,   is a diagonal Matrix, and eqf  is the 

equilibrium distribution. The detailed forms of M  and   can be found in Ref. [45]. Using the 

transformation matrix M , the right-hand side of Eq. (1) can be rewritten as 

  
2

eq

t
  
     

 
m m m m I S


   (2) 

where m Mf , eq eqm Mf , I  is the unit tensor, and S  is the forcing term in the moment space. 

The detailed form of S  can be found in Refs. [40, 47]. Then the lattice Boltzmann equation is 

    , ,t tf t f t      x e x ,  (3) 

where 1  f M m . The macroscopic density and velocity are calculated via 

 ,
2

tf f  
 


    v e F ,  (4) 

where  ,x yF FF  is the total force acting on the system.  

The gravitational force is given by  b V  F g , where V  is the vapor-phase density and 

 0, g g  is the gravitational acceleration. For single-component multiphase systems, the 

intermolecular interaction force mF  [36, 37], through which the phase separation between difference 

phases can be automatically achieved, is given as follows [48]: 

    m tG w  


    F x x e e   (5) 

where   x  is the pseudopotential, G  is the interaction strength, and w  are the weights [48]. To 

reproduce a non-ideal equation of state, the pseudopotential is taken as    2 2

EOS2 sp c Gc  x ,  
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where EOSp  is the non-ideal equation of state. In the original pseudopotential lattice Boltzmann model 

devised by Shan and Chen [36, 37], the surface tension cannot be tuned independently of the 

liquid-vapor density ratio. Using the treatment in Ref. [49], which was proposed to decouple the 

surface tension from the density ratio, the surface tension can be an adjustable parameter when the 

density ratio is fixed.  

Through the Chapman-Enskog analysis, it can be found that the Navier-Stokes equation with a 

non-ideal pressure tensor can be recovered from Eqs. (2) and (3) [40]. The governing equation for the 

temperature field is given by (the viscous heat dissipation is neglected) [50] 

   EOS

v

pDT
c T T

Dt T 

 
 

     
 

v ,  (6) 

where   is the thermal conductivity and vc  is the specific heat at constant volume. The temperature 

equation is solved with the fourth-order Runge-Kutta scheme for time discretization and the isotropic 

central scheme for spatial discretization [40]. The Peng-Robinson equation of state is adopted [51] 

 
  2

EOS 2 21 1 2

a TRT
p

b b b

 

  
 

  
,  (7) 

where   
2

21 0.37464 1.54226 0.26992 1 cT T       
 

 ( 0.344  ) , 2 20.45724 c ca R T p , 

and 0.0778 c cb RT p . The parameters a , b , and R  are chosen as 3 49a  , 2 21b  , and 

1R   [40]. The critical temperature cT  can be obtained from the formulations of a  and b . Note 

that all the quantities in the present paper are taken in lattice units, namely the units in the lattice 

Boltzmann method, which are based on the lattice constant 1x tc    , where x  is the spatial 

spacing and t  is the time step. The conversion between the lattice units and the physical units can be 

found, e.g., in Refs. [34, 52]. Obviously, using a non-ideal equation of state, the pseudopotential   in 

Eq. (5) will be linked to the temperature field. Then the liquid-vapor phase change can be driven by the 

temperature field through the equation of state. As a result, the rate of the liquid-vapor phase change is 
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a computational output [28] rather than an artificial input, which is implemented by adding artificial 

phase-change terms to the temperature equation [53]. Biferale et al. [39] have numerically 

demonstrated that the Clausius-Clapeyron relation is satisfied when using a non-ideal equation of state 

for simulating liquid-vapor phase change. Nevertheless, such a treatment for thermal multiphase flows 

is currently only applicable to low and moderate liquid-vapor density ratios due to the problem that at 

large density ratios the interface thickness considerably changes with the temperature [47]. Therefore in 

the present work the saturation temperature is chosen to be sat 0.86 cT T , which corresponds to the 

liquid-vapor density ratio 17L V   . 

3. Numerical results and discussion 

3.1 Validation of the D
2
 law.  

In this section numerical simulations are conducted to assess the validity of the model for 

simulating evaporation. The well-know D2 law for droplet vaporization is considered [54, 55], which 

predicts the time rate of change of the square of the evaporating droplet diameter to be constant, i.e., 

 2 2

0D t D Kt  , on the basis of the following conditions: the liquid and vapor phases are quasi-steady, 

the evaporation occurs in an environment with negligible viscous heat dissipation and no buoyancy 

( 0g  ), and the thermophysical properties ( pc , vc , and  ) are constant. Our simulations are carried 

out on a computational domain (an enclosed cavity) discretized by 200 200x yN N    lattices nodes 

with a droplet (the droplet diameter 0 60D  ) being initially placed at the center. The temperature of 

the droplet is the saturation temperature satT . 

At the initial time step, a uniform temperature gT  is applied to the surrounding vapor of the 

droplet. The superheat g satT T T    is chosen to be 0.14 cT . The evaporation is caused by the 

temperature gradient at the liquid-vapor interface. During the process, the vapor phase temperature is 
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kept above the droplet temperature by employing a constant temperature condition (
gT ) at the 

boundaries. The kinematic viscosity is set to 0.1   ( 0.8  ) in the whole computational domain. 

The specific heat at constant volume vc  is taken as 5vc  . According to the assumptions for the D2 

law, the thermal conductivity   should be constant. Then the parameter K  in the D2 law will 

depend linearly on   [54]. Two cases are considered, i.e., Case A: 1 3   and Case B: 2 3   

(lattice unit). The evaporation processes of these two cases are displayed in Fig. 1.  

  

(a) 0.025t   

  

(b) 2.5t   

  

(c) 4.5t   

Fig. 1 Snapshots of droplet evaporation at 0.025t  , 2.5 , and 4.5 . Case A (left) and Case B (right). 

The non-dimensional time t  is defined as ht t t  , where 
2 2

h M Mt l l     is the 

minimum hydrodynamic time scale [34] (see Section 1.4 in the reference), in which Ml  is a typical 
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length scale,    is the dynamic viscosity, and   is the kinematic viscosity. For the present 

problem, the characteristic length scale, Ml , is chosen to be the droplet diameter M 0l D . A similar 

characteristic time can also be found in Ref. [56]. From Fig. 1 it can be seen that for both cases the 

circular shape of the droplet is well preserved during the evaporation process. Furthermore, we can see 

that the droplet evaporates faster in Case B than in Case A. The square of the non-dimensional droplet 

diameter ( 0D D ) is plotted against time for the two cases in Fig. 2. From the figure, the D2 law, 

namely the linear relationship between  
2

0D D  and t , can be clearly observed. Moreover, the 

evaporation rates (the slope denoted by the parameter K  in the D2 law) of Cases A and B are found to 

be 0.0037K   and 0.0076 , respectively. It can be seen that the evaporation rate of Case B is 

approximately two times that of Case A. 
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Fig. 2 The variation of the square of the non-dimensional droplet diameter with time. 

3.2 Simulation of Leidenfrost droplets on ratchet surfaces 

3.2.1 Numerical setup 

Numerical simulations are now carried out to investigate the behavior of Leidenfrost droplets on 

ratchet surfaces. The geometric structure of the ratchet surface is illustrated in Fig. 3, which has been 

adopted in several experimental studies. In the figure, L  and H  are defined according to Ref. [9] 
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(see Figs. 1 and 3(a) in the reference). It can be found that 0H   and H L  correspond to flat 

surfaces and symmetric ratchet surfaces, respectively. For such a structure, we adopt the standard 

Cartesian coordinate system with the x and y directions being parallel to the directions of L  and H , 

respectively. For horizontal ratchet surfaces, the gravitational force is perpendicular to the dash-dotted 

line in Fig. 3.  

L
H

 

Fig. 3 A schematic diagram of the ratchet surface. 

The temperature of the ratchet surface is wT  and the surface superheat w satT T T    is fixed at 

0.34 cT , which is sufficient for generating the Leidenfrost phenomenon. The relaxation time   is set 

to 0.9  (the kinematic viscosity  0.5 3   ). The thermal conductivity vc    is chosen to 

be proportional to the density   with a constant  , which is the thermal diffusivity [40]. The ratio 

between the thermal diffusivity   and the kinematic viscosity   is taken as 0.35   . The 

gravitational acceleration g  is set to 510g  . As previously mentioned, all the quantities are taken 

in lattice units and can be directly implemented in the numerical codes.  

Using numerical simulations, there are many parameters that can be investigated. Nevertheless, as 

a preliminary attempt in modeling self-propelled Leidenfrost droplets on ratchet surfaces, we focus on 

investigating the performances of Leidenfrost droplets with different initial radii and the effects of the 

aspect ratio ( H L ) of the ratchet. Moreover, we will study the processes that the Leidenfrost droplets 

climb uphill on tilted ratchet surfaces. In our simulations, L  is fixed at 48L   (lattice unit). Five 

different choices of H  are considered when studying the effects of H ( 1 4H L  , 7 24 , 1 3 , 

5 12 , and 1 2 ). For the former three cases, the grid system is 500 250x yN N   . For the latter two 
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cases, the grid systems are 500 300  and 500 360 , respectively. The no-slip boundary condition is 

applied to the ratchet surface and the out flow boundary condition is employed at non-wall boundaries. 

The unknown information at the out flow boundary is extrapolated from the interior field. 

3.2.2 The vapor flow and the effects of the initial droplet radius 

  

(a) 0t   

  

(b) 0.11574t    

  

(c) 0.52083t   

  

(d) 1.44676t   

  

(e) 2.19907t   

Fig. 4 Snapshots of the motion of Leidenfrost droplets on a horizontal ratchet surface with 1 3H L  . 

The initial droplet radius is 0 45R   (left) and 0 40R   (right). 

In the present study, the initial radius ( 0R ) of the droplet is considered to be comparable with L . 

In this subsection we report the simulations of Leidenfrost droplets on a horizontal ratchet surface with 

1 3H L  . The non-dimensional time is also defined as ht t t   with 
2

h Mt l   (see the 

descriptions in Section 3.1). Here Ml  is chosen to be L . The results of the cases 0 45R   and 40  
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are shown in Fig. 4. It should be noted that the computational domain is larger than the domain shown 

in Fig. 4 (as well as the following figures). As can be seen in Fig. 4(a), the droplets were initially 

placed in contact with the peak of a ratchet. After the initial time step, the liquids near the contact point 

will evaporate very rapidly because of the high temperature of the ratchet surface. The released vapor 

will form a thin vapor layer beneath the droplet, keeping the droplet away from the peak of the ratchet, 

which can be observed in Fig. 4(b). Moreover, from Fig. 4(b) we can see that the symmetry of the 

bottom surface of the droplet has been broken due to the asymmetry of the ratchet. Specifically, on the 

right-hand side of the ratchet peak, a portion of the droplet bottom surface has become concave.  

  

(a) 0.52083t                         (b) 1.44676t   

Fig. 5 The streamlines of the case 0 45R   at 0.52083t   and 1.44676 . 

The streamlines of the case 0 45R   at 0.52083t   and 1.44676  are displayed in Fig. 5, 

which corresponds to the density contours in the left-hand panels of Figs. 4(c) and 4(d). From Fig. 5 the 

detailed flow information of the vapor layer between the droplet and the ratchet surface can be 

observed. Owing to the proximity of the ratchet peak to the droplet bottom surface, the evaporation in 

Fig. 5 is believed to be strongest around the peak of the central ratchet, which leads to very rapid 

generation of vapor. The evaporated vapor is then split by the ratchet peak and escapes along the 

trenches formed by the ratchets. To be specific, on the left-hand side of the central ratchet peak, the 

vapor flows toward the upper left. This flow supports the weight of the left part of the droplet and 

provides an “upward kick” to the droplet. Meanwhile, the vapor flow on the right-hand side pulls the 
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droplet forward along the trench formed by the ratchets. As a result, the droplet moves to the right, 

which can be clearly seen in Fig. 4. In other words, it can be seen that the droplet moves in the 

direction toward the slowly inclined side from the ratchet peaks, which is consistent with the direction 

of droplet motion observed experimentally by Linke et al. [8]. 

From Fig. 5 we can also observe the flow information of the droplet. It can be found that the 

velocity vectors vary spatially within the droplet, which is attributed to the fact that the droplet is a soft 

deformable body rather than a solid object. It can be seen that the liquid circulations inside the droplet 

are affected by the droplet velocity. At 0.52083t  , the moving velocity of the droplet is very small. 

Therefore the liquid circulations inside the droplet are mainly induced by the vapor flows below the 

droplet, which leads to two vortices that rotate in opposite directions (one clockwise and the other 

counter-clockwise). At 1.44676t  , with the increase of the droplet velocity, the liquid circulations 

inside the droplet are changed. The counter-clockwise vortex has disappeared due to the significant 

increase of the droplet velocity and the fact that on the right-hand side of the central ratchet peak the 

droplet and the vapor move in the same direction. Meanwhile, the clockwise vortex, which was 

induced by the vapor flow on the left-hand side of the central ratchet peak, has become very small, 

resulting from the increasing influence of the droplet velocity.  

The effects of the initial droplet radius are depicted in Fig. 6. Actually, in Fig. 4 it has been shown 

that the droplet with an initial radius of 0 40R   moves faster than that with 0 45R  . To enable a 

more comprehensive comparison, the results of the case 0 35R   are also considered. The effect of 

the initial droplet radius on the average moving velocity of the droplet can be found in Fig. 6(a). The 

average droplet velocity (in lattice unit) at the time t  is measured via  u t s t   , where s  is 

the distance (along the horizontal direction) traveled by the droplet between the time 2t t  and 
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2t t . From Fig. 6(a) we can see that the moving velocity of the droplet increases when the initial 

droplet radius decreases from 
0 45R   to 

0 35R  . In our simulations, the surface tension 

0.0852  , 6.5L  , and 510g   (lattice unit). Therefore the capillary length Ca Ll g   is 

about 36.2 , which means that the radii of the droplets are comparable with the capillary length. In this 

regard, our numerical results are consistent with the experimental study of Marin et al. [13], who found 

that, when the droplet size is comparable with the capillary length, the droplet velocity will increase as 

the droplet size decreases.  
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  (a) the average droplet velocity                  (b) the evaporation rate 

Fig. 6 The effects of the initial radius on the moving velocity of the droplet and the evaporation rate. 

The evaporation rates of the three cases are also investigated and the results are shown in Fig. 6(b), 

where eD  represents the effective diameter of the droplet, which is evaluated from the domain 

occupied by the droplet, and 0D  is the initial droplet diameter of the case 0 40R  . From Fig. 6(b) 

we can find that there are no significant differences between the slopes of the three cases, which means 

that the amount of liquid that has been evaporated within a given time interval is approximately the 

same for the three cases, although the moving velocity of the droplet is different in these cases. 

3.2.3 The influences of the ratchet aspect ratio 
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Now attention turns to the influences of the ratchet aspect ratio H L . There are two special cases 

for this ratio: (a) the ratchet surface will reduce to a flat surface if H  equals zero ( 0H L  ) and (b) 

the ratchets will be symmetric when H  is equal to L ( 1H L  ). Melling [57] has demonstrated that 

the Leidenfrost droplets placed on a horizontal flat surface or a symmetric ratchet surface at zero 

incline will not undergo directed motion. In other words, the self-propelled motion of Leidenfrost 

droplets in a preferential direction occurs when 0H L   but disappears when H L  is close to 1.0 . 

It is therefore believed that there probably exists a critical value of H L  in the interval  0, 1 , which 

may provide the maximum propulsion for the Leidenfrost droplets.  

  

  

 

 

(a) 1 4H L    

 

 

 

 

(b) 7 24H L   

 

 

 

 

(c) 1 3H L    

  

20 

 

 

(d) 5 12H L   

 

 

 

 

(e) 1 2H L   

Fig. 7 Snapshots of the self-propelled motion of a Leidenfrost droplet with 0 40R   on five different 

ratchet surfaces at 0.57870t   (left), 1.33102  (middle), and 2.02546  (right).  

To numerically evaluate the critical value of H L , five different choices of H  are considered 
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with L  being fixed, which have been previously mentioned: 1 4H L  , 7 24 , 1 3 , 5 12 , and 

1 2 . The self-propelled motion of a Leidenfrost droplet with 
0 40R   on these ratchet surfaces is 

displayed in Fig. 7. The left, middle, and right panels of Fig. 7 represent the results at 0.57870t  , 

1.33102 , and 2.02546 , respectively. By comparing the droplet positions in the three panels, we can 

see that the droplet moves faster when H L  increases from 1 4  to 1 3 . However, when H L  is 

further increased, the moving velocity of the droplet decreases. To be specific, the left and right panels 

of Fig. 7 clearly show that, within the time interval  0.57870, 2.02546t  , the droplet traveled a 

much longer distance in the case 1 3H L   than in the other cases. Quantitatively, the average 

moving velocity of the droplet is plotted in Fig. 8(a) for the cases 1 4H L  , 1 3 , and 5 12 . For 

comparison, the results of the droplet with 0 45R   are shown in Fig. 8(b). In the two figures a similar 

trend can be observed about the average moving velocity of the droplet when H L  increases from 

1 4  to 5 12 , namely the maximum moving velocity of the droplet generally appears in the case 

1 3H L  . Meanwhile, from Fig. 8 we can also find that in the early stage the results of the cases 

1 3H L   and 5 12  are nearly the same. This is mainly because in the early stage the gravity has an 

important influence and the vapor flow below the droplet has not dominated the motion of the droplet. 
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(a) 0 40R                                  (b) 0 45R   

Fig. 8 The average moving velocities of Leidenfrost droplets on the ratchet surfaces with 1 4H L  , 

1 3 , and 5 12 . The initial droplet radius is 0 40R   (left) and 0 45R   (right). 
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Furthermore, from each panel of Fig. 7 we can observe that the droplet gets smaller (i.e., the 

droplet evaporates more rapidly) when H L  increases. Such a phenomenon is related to the 

following two changes. First, it can be found that the area of the heating surface is increased when 

H L  increases. Second, with the increase of H L , the vapor flow beneath the droplet will have 

more space to escape, which can be seen in Fig. 7. As a consequence, the thickness of the vapor layer 

between the ratchet peak and the bottom surface of the droplet will be reduced. Then the heat transfer 

between them, which is an important part of the whole heat transfer [9], will be enhanced. 
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Fig. 9 The transient heat flux at the initial ratchet peak ( 0 40R  ). 

To illustrate the above point, the heat flux at the initial ratchet peak (the peak covered by the 

droplets at the initial time, see Fig. 4(a)) is evaluated. Usually, the heat flux at a corner can be 

calculated according to the energy balance around the corner (see the textbooks of heat transfer, e.g., 

[58]). Here the phase change is not considered in calculating the heat flux with the energy balance 

treatment since in the present study the rate of the liquid-vapor phase change is a computational output 

not an a priori given quantity. The results are presented in Fig. 9 for the time 0 0.725t  , during 

which the droplets are moving on the initial ratchet peak. From the figure we can clearly see that the 

heat flux increases when H  varies from 1 4  to 1 2 . It is obvious that the heat flux of the case 
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1 4H L   is much lower than that of the other cases and it can be found that the cases 5 12H L   

and 1 2  give very close results. Previously, it has been shown that, among the five cases, the case 

1 3H L   is better than the others in terms of the moving velocity of the droplet. From Fig. 9 it can 

be seen that the heat flux given by this case is smaller than that of the cases 5 12H L   and 1 2 . 

Nevertheless, it does not mean the case 1 3H L   is inferior to these two cases when a high heat flux 

is required (e.g., for cooling systems), because within a given time we can place more droplets on the 

ratchet surface that leads to a large droplet velocity.  

3.2.4 The Leidenfrost droplets on inclined ratchet surfaces 

In this subsection we present some results about the process that a Leidenfrost droplet climbs 

uphill on a tilted ratchet surface. To date, there have been no numerical simulations about such a 

process and the first experimental study was conducted by Melling [57]. The numerical setup and the 

grid system are the same as those used in the above simulations except that the angle between the 

gravitational force and the dash-dotted line in Fig. 3 is no longer 90 degrees. The numerical results of 

the droplets with 0 40R   and 35  on an inclined ratchet surface are displayed in Fig. 10 

( 1 3H L  ). The surface is inclined at an angle of 2 degrees to the horizontal. From the figure the 

climbing processes of the Leidenfrost droplets can be clearly observed. Similar to the results on 

horizontal ratchet surfaces, the results on tilted ratchet surfaces also show that the droplet with 

0 35R   moves faster than the droplet with 0 40R  , which indicates that the uphill acceleration is 

relatively large in the former case. Moreover, by comparing the results of the droplet with 0 40R   on 

horizontal and inclined ratchet surfaces (in Figs. 4 and 10), we can find that the moving velocity of the 

droplet is reduced on the inclined ratchet surface. Such a reduction of the droplet velocity is expected 

since the uphill acceleration provided by the vapor flow to the Leidenfrost droplet should overcome the 
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downhill acceleration, which results from the gravitational force.  

  

(a) 0.57870t   

  

(b) 0.92593t   

  

(c) 1.44676t   

  

(d) 2.02546t   

Fig. 10 Snapshots of the motion of Leidenfrost droplets on a ratchet surface inclined at an angle of 2 

degrees to the horizontal. The initial droplet radius is 0 40R   (left) and 0 35R   (right). 

As the inclination angle of the ratchet surface increases, the influence of the downhill acceleration 

caused by the gravitational force will increase. To illustrate this point, the results of the droplet with 

0 35R   on a ratchet surface inclined at an angle of 4 degrees to the horizontal are presented in Fig. 11. 

By comparing the results in Fig. 11 with the results in the right panel of Fig. 10, we can see that, with 

the increase of the inclination angle of the ratchet surface, the droplet moves downhill in the early stage 

owing to the downhill acceleration. Nevertheless, for the case in Fig. 11, with time going on, the vapor 

flow beneath the droplet is still able to support the climbing uphill process of the droplet, which can be 

seen from Fig. 11(d). The corresponding streamlines at 1.15741t   and 1.44676  are shown in Fig. 

12. The variations of the vapor flow beneath the droplet can be clearly observed by comparing Fig. 
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12(b) with Fig. 12(a). At 1.44676t  , it can be found that, because of the collision between the 

droplet and the ratchet surface, the vapor flow beneath the droplet has changed its direction in the 

region that is located on the left side of the central ratchet peak, which is the reason why the droplet 

turns around. 

  

(a) 0.57870t      

 

(b) 1.15741t   

  

(c) 1.44676t     

 

 (d) 2.48843t   

Fig. 11 Snapshots of the motion of a Leidenfrost droplet on a ratchet surface inclined at an angle of 4 

degrees to the horizontal ( 1 3H L  ). The initial droplet radius is 0 35R  . 

  

(a) 1.15741t                          (b) 1.44676t   

Fig. 12 The streamlines at 1.15741t   and 1.44676 . 

When the inclination angle is further increased, it is believed that the downhill acceleration will 

gradually dominate the whole motion of the droplet. Different inclination angles have been investigated 
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for the droplets with 
0 35R  , 40 , and 45  on the ratchet surface with 1 3H L  . The results are 

given in Fig. 13, where the filled circles denote the cases in which the Leidenfrost droplets can 

successfully climb uphill. If the droplet moves downhill in the early stage, the requirement of “a 

successful case” is that the downhill distance traveled by the droplet should be smaller than 2 2L H . 

From Fig. 13 we can see that the maximum inclination angle at which a Leidenfrost droplet can still 

climb uphill successfully is different for the cases with different initial radii. To be specific, it can be 

seen that the maximum inclination angle decreases when the initial droplet radius increases, which is 

attributed to the reduction of the uphill acceleration from 0 35R   to 0 45R  . For different droplets, 

the downhill acceleration caused by the gravity is the same when the inclination angle is given. 

However, the uphill acceleration is different, which can be seen clearly in Fig. 10.  
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Fig. 13 The achievable inclination angles (degree) regarding the climbing uphill processes of 

Leidenfrost droplets with different initial radii. 

4. Summary and conclusions 

In this work, an attempt has been made in investigating self-propelled Leidenfrost droplets on 

ratchet surfaces with numerical simulations. The numerical model is based on the lattice Boltzmann 

method, which consists of a pseudopotential multiphase lattice Boltzmann model for simulating the 
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density and velocity fields and a finite-difference solver for the temperature field. The liquid-vapor 

phase change is driven by the temperature field via a non-ideal equation of state. The capability of the 

model for simulating evaporation has been validated through reproducing the well-known D2 law.  

The dynamic behavior of Leidenfrost droplets on horizontal ratchet surfaces has been investigated. 

Numerical results show that the self-propelled motion of Leidenfrost droplets originates from the 

asymmetry of the ratchets and the vapor flows below the droplets. It is found that the Leidenfrost 

droplets move in the direction toward the slowly inclined side from the ratchet peaks, which agrees 

with the direction of droplet motion observed in Linke et al.’s experiments. The effects of the initial 

droplet radius 0R  and the influences of the ratchet aspect ratio H L  have been studied. For the 

considered ratchet surfaces (see Fig. 3), it has been found that there exists a critical value of H L . 

Numerical results show that the droplet velocity increases when H L  increases from 1 4  to 1 3 . 

However, it decreases when H L  is further increased. Moreover, we have also studied the 

performances of Leidenfrost droplets on inclined ratchet surfaces. Different inclination angles have 

been investigated. For the case of the droplet with 0 35R   on a ratchet surface inclined at an angle of 

4 degrees to the horizontal, it is found that the droplet moves downhill in the early stage due to the 

downhill acceleration caused by the gravitational force. Later, the droplet turns around at a certain time 

with the help of the uphill acceleration, which is generated by the vapor flow beneath the droplet. The 

maximum inclination angle at which a Leidenfrost droplet can still climb uphill successfully is found to 

be related to the initial radius of the droplet. 

In summary, we have numerically revealed some basic features of self-propelled Leidenfrost 

droplets on both horizontal and tilted ratchet surfaces. We hope the present work will stimulate more 

numerical studies of self-propelled Leidenfrost droplets from various aspects. As previously mentioned, 
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the treatment of using a non-ideal equation of state for simulating liquid-vapor phase change is 

currently applicable to low or moderate density ratios. In the future, attention will be paid to the 

improvement of the model for simulating liquid-vapor phase change at large density ratios ( 1000 ), 

so as to enable quantitative comparisons with experimental studies. In addition, three-dimensional 

modeling will be considered in the future work, which may provide more information about the 

features of self-propelled Leidenfrost droplets. 
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